Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Brain Res ; 1834: 148915, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582414

ABSTRACT

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Subject(s)
Bestrophins , Ganglia, Spinal , Hyperalgesia , Sleep Deprivation , Spinal Cord , Animals , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Hyperalgesia/metabolism , Male , Female , Rats , Ganglia, Spinal/metabolism , Spinal Cord/metabolism , Bestrophins/metabolism , Chloride Channels/metabolism , Sleep, REM/physiology , Rats, Wistar , Anoctamin-1 , Calcium Channels, L-Type
2.
Curr Med Sci ; 44(2): 419-425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619684

ABSTRACT

OBJECTIVE: Autosomal recessive bestrophinopathy (ARB), a retinal degenerative disease, is characterized by central visual loss, yellowish multifocal diffuse subretinal deposits, and a dramatic decrease in the light peak on electrooculogram. The potential pathogenic mechanism involves mutations in the BEST1 gene, which encodes Ca2+-activated Cl- channels in the retinal pigment epithelium (RPE), resulting in degeneration of RPE and photoreceptor. In this study, the complete clinical characteristics of two Chinese ARB families were summarized. METHODS: Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing was performed on the probands to screen for disease-causing gene mutations, and Sanger sequencing was applied to validate variants in the patients and their family members. RESULTS: Two novel mutations, c.202T>C (chr11:61722628, p.Y68H) and c.867+97G>A, in the BEST1 gene were identified in the two Chinese ARB families. The novel missense mutation BEST1 c.202T>C (p.Y68H) resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1. Another novel variant, BEST1 c.867+97G>A (chr11:61725867), located in intron 7, might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators. CONCLUSION: Our findings represent the first use of third-generation sequencing (TGS) to identify novel BEST1 mutations in patients with ARB, indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes. The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.


Subject(s)
Angiotensin Receptor Antagonists , Eye Diseases, Hereditary , Retinal Diseases , Humans , Angiotensin-Converting Enzyme Inhibitors , Bestrophins/genetics , Bestrophins/metabolism , Phenotype
3.
Am J Physiol Cell Physiol ; 326(5): C1345-C1352, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38557358

ABSTRACT

The recent development of single-cell transcriptomics highlighted the existence of a new lineage of mature absorptive cells in the human intestinal epithelium. This subpopulation is characterized by the specific expression of Bestrophin 4 (BEST4) and of other marker genes including OTOP2, CA7, GUCA2A, GUCA2B, and SPIB. BEST4+ cells appear early in development and are present in all regions of the small and large intestine at a low abundance (<5% of all epithelial cells). Location-specific gene expression profiles in BEST4+ cells suggest their functional specialization in each gut region, as exemplified by the small intestine-specific expression of the ion channel CFTR. The putative roles of BEST4+ cells include sensing and regulation of luminal pH, tuning of guanylyl cyclase-C signaling, transport of electrolytes, hydration of mucus, and secretion of antimicrobial peptides. However, most of these hypotheses lack functional validation, notably because BEST4+ cells are absent in mice. The presence of BEST4+ cells in human intestinal organoids indicates that this in vitro model should be suitable to study their role. Recent studies showed that BEST4+ cells are also present in the intestinal epithelium of macaque, pig, and zebrafish and, here, we report their presence in rabbits, which suggests that these species could be appropriate animal models to study BEST4+ cells during the development of diseases and their interactions with environmental factors such as diet or the microbiota. In this review, we summarize the existing literature regarding BEST4+ cells and emphasize the description of their predicted roles in the intestinal epithelium in health and disease.NEW & NOTEWORTHY BEST4+ cells are a novel subtype of mature absorptive cells in the human intestinal epithelium highlighted by single-cell transcriptomics. The gene expression profile of BEST4+ cells suggests their role in pH regulation, electrolyte secretion, mucus hydration, and innate immune defense. The absence of BEST4+ cells in mice requires the use of alternative animal models or organoids to decipher the role of this novel type of intestinal epithelial cells.


Subject(s)
Intestinal Mucosa , Animals , Humans , Intestinal Mucosa/metabolism , Bestrophins/metabolism , Bestrophins/genetics , Rabbits , Epithelial Cells/metabolism
5.
Glia ; 71(11): 2527-2540, 2023 11.
Article in English | MEDLINE | ID: mdl-37431178

ABSTRACT

Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, affects numerous immune cell functions. Microglia, the brain's resident innate immune cells, regulate GABA signaling through GABA receptors and express the complete GABAergic machinery for GABA synthesis, uptake, and release. Here, the use of primary microglial cell cultures and ex vivo brain tissue sections allowed for demonstrating that treatment with lipopolysaccharide (LPS) increased microglial GABA uptake as well as GABA transporter (GAT)-1 trafficking. This effect was not entirely abolished by treatment with GAT inhibitors (GAT-Is). Notably, LPS also induced microglial upregulation of bestrophin-1 (BEST-1), a Ca2+ -activated Cl- channel permeable to GABA. Combined administration of GAT-Is and a BEST-1 inhibitor completely abolished LPS-induced microglial GABA uptake. Interestingly, increased microglial GAT-1 membrane turnover via syntaxin 1A was detected in LPS-treated cultures after BEST-1 blockade. Altogether, these findings provided evidence for a novel mechanism through which LPS may trigger the inflammatory response by directly altering microglial GABA clearance and identified the GAT-1/BEST-1 interplay as a potential novel mechanism involved in brain inflammation.


Subject(s)
Lipopolysaccharides , Microglia , Microglia/metabolism , Lipopolysaccharides/pharmacology , GABA Plasma Membrane Transport Proteins/metabolism , Bestrophins/metabolism , gamma-Aminobutyric Acid/metabolism
6.
Adv Sci (Weinh) ; 10(17): e2205915, 2023 06.
Article in English | MEDLINE | ID: mdl-37088729

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) are characterized by an abundance of monocytes and macrophages recruited from the peripheral blood. However, it has not been determined whether these infiltrated cells can be released back into circulation with a tumor-associated neobiosignature. This study reports that Bestrophin1 (BEST1), a component protein of Ca2+ -activated Cl- channels (CaCCs), is highly expressed on classical monocytes in the peripheral blood of HNSCC patients. This is due to monocyte education by tumor cells, in which tumoral VEGF-A upregulates BEST1 expression on monocytes through the MEK-ERK-ELK1 pathway. This leads to improved secretion of IL-6 and IL-8, which promotes tumor cell proliferation. This work also finds that BEST1 facilitates the motility of monocytes, contributing to the migration of these cells back into circulation. These results suggest that the expression of BEST1 on peripheral monocytes may be a potential tool for monitoring tumor progression, and opens up the possibility of searching for cancer biomarkers on monocytes rather than on the tumor or its products.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Monocytes , Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Macrophages/metabolism , Bestrophins/metabolism
7.
Molecules ; 28(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37110551

ABSTRACT

Bestrophin 1 (Best1) is a chloride channel that localises to the plasma membrane of retinal pigment epithelium (RPE) cells. Mutations in the BEST1 gene are associated with a group of untreatable inherited retinal dystrophies (IRDs) called bestrophinopathies, caused by protein instability and loss-of-function of the Best1 protein. 4PBA and 2-NOAA have been shown to rescue the function, expression, and localisation of Best1 mutants; however, it is of interest to find more potent analogues as the concentration of the drugs required is too high (2.5 mM) to be given therapeutically. A virtual docking model of the COPII Sec24a site, where 4PBA has been shown to bind, was generated and a library of 1416 FDA-approved compounds was screened at the site. The top binding compounds were tested in vitro in whole-cell patch-clamp experiments of HEK293T cells expressing mutant Best1. The application of 25 µM tadalafil resulted in full rescue of Cl- conductance, comparable to wild type Best1 levels, for p.M325T mutant Best1 but not for p.R141H or p.L234V mutants.


Subject(s)
Chloride Channels , Retinal Pigment Epithelium , Humans , Bestrophins/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Tadalafil , HEK293 Cells , Mutation , Retinal Pigment Epithelium/metabolism , Vesicular Transport Proteins/genetics
8.
BMB Rep ; 56(2): 172-177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36593105

ABSTRACT

BEST family is a class of Ca2+-activated Cl- channels evolutionary well conserved from bacteria to human. The human BEST paralogs (BEST1-BEST4) share significant amino acid sequence homology in the N-terminal region, which forms the transmembrane helicases and contains the direct calcium-binding site, Ca2+-clasp. But the cytosolic C-terminal region is less conserved in the paralogs. Interestingly, this domain-specific sequence conservation is also found in the BEST1 orthologs. However, the functional role of the C-terminal region in the BEST channels is still poorly understood. Thus, we aimed to understand the functional role of the C-terminal region in the human and mouse BEST1 channels by using electrophysiological recordings. We found that the calcium-dependent activation of BEST1 channels can be modulated by the C-terminal region. The C-terminal deletion hBEST1 reduced the Ca2+-dependent current activation and the hBEST1-mBEST1 chimera showed a significantly reduced calcium sensitivity to hBEST1 in the HEK293 cells. And the C-terminal domain could regulate cellular expression and plasma membrane targeting of BEST1 channels. Our results can provide a basis for understanding the C-terminal roles in the structure-function of BEST family proteins. [BMB Reports 2023; 56(3): 172-177].


Subject(s)
Calcium , Eye Proteins , Humans , Animals , Mice , Bestrophins/metabolism , Calcium/metabolism , Eye Proteins/metabolism , HEK293 Cells , Cell Membrane/metabolism
9.
J Pain ; 24(4): 689-705, 2023 04.
Article in English | MEDLINE | ID: mdl-36521670

ABSTRACT

Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Animals , Bestrophins/metabolism , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Calcitonin Gene-Related Peptide/metabolism , Neuralgia/metabolism , Spinal Nerves/injuries , Ligation , Chloride Channels/metabolism , Ganglia, Spinal/metabolism
10.
Nature ; 611(7934): 180-187, 2022 11.
Article in English | MEDLINE | ID: mdl-36289327

ABSTRACT

Bestrophin-2 (BEST2) is a member of the bestrophin family of calcium-activated anion channels that has a critical role in ocular physiology1-4. Here we uncover a directional permeability of BEST2 to glutamate that heavily favours glutamate exit, identify glutamine synthetase (GS) as a binding partner of BEST2 in the ciliary body of the eye, and solve the structure of the BEST2-GS complex. BEST2 reduces cytosolic GS activity by tethering GS to the cell membrane. GS extends the ion conducting pathway of BEST2 through its central cavity and inhibits BEST2 channel function in the absence of intracellular glutamate, but sensitizes BEST2 to intracellular glutamate, which promotes the opening of BEST2 and thus relieves the inhibitory effect of GS. We demonstrate the physiological role of BEST2 in conducting chloride and glutamate and the influence of GS in non-pigmented ciliary epithelial cells. Together, our results reveal a novel mechanism of glutamate release through BEST2-GS.


Subject(s)
Bestrophins , Glutamate-Ammonia Ligase , Glutamic Acid , Glutamine , Bestrophins/metabolism , Epithelial Cells/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Ciliary Body/metabolism , Cell Membrane/metabolism , Chlorides/metabolism
11.
Int J Mol Sci ; 23(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35806438

ABSTRACT

Best Vitelliform Macular dystrophy (BVMD) is the most prevalent of the distinctive retinal dystrophies caused by mutations in the BEST1 gene. This gene, which encodes for a homopentameric calcium-activated ion channel, is crucial for the homeostasis and function of the retinal pigment epithelia (RPE), the cell type responsible for recycling the visual pigments generated by photoreceptor cells. In BVMD patients, mutations in this gene induce functional problems in the RPE cell layer with an accumulation of lipofucsin that evolves into cell death and loss of sight. In this work, we employ iPSC-RPE cells derived from a patient with the p.Pro77Ser dominant mutation to determine the correlation between this variant and the ocular phenotype. To this purpose, gene and protein expression and localization are evaluated in iPSC-RPE cells along with functional assays like phagocytosis and anion channel activity. Our cell model shows no differences in gene expression, protein expression/localization, or phagocytosis capacity, but presents an increased chloride entrance, indicating that the p.Pro77Ser variant might be a gain-of-function mutation. We hypothesize that this variant disturbs the neck region of the BEST1 channel, affecting channel function but maintaining cell homeostasis in the short term. This data shed new light on the different phenotypes of dominant mutations in BEST1, and emphasize the importance of understanding its molecular mechanisms. Furthermore, the data widen the knowledge of this pathology and open the door for a better diagnosis and prognosis of the disease.


Subject(s)
Bestrophins , Induced Pluripotent Stem Cells , Vitelliform Macular Dystrophy , Bestrophins/genetics , Bestrophins/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Retinal Pigment Epithelium/metabolism , Vitelliform Macular Dystrophy/genetics , Vitelliform Macular Dystrophy/metabolism , Vitelliform Macular Dystrophy/pathology
12.
Molecules ; 27(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35807512

ABSTRACT

Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl- channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs-1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.


Subject(s)
Phosphatidylcholines , Sphingomyelins , Bestrophins/chemistry , Bestrophins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/chemistry , Humans , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry
13.
Nat Commun ; 13(1): 2505, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523970

ABSTRACT

In the light reaction of plant photosynthesis, modulation of electron transport chain reactions is important to maintain the efficiency of photosynthesis under a broad range of light intensities. VCCN1 was recently identified as a voltage-gated chloride channel residing in the thylakoid membrane, where it plays a key role in photoreaction tuning to avoid the generation of reactive oxygen species (ROS). Here, we present the cryo-EM structures of Malus domestica VCCN1 (MdVCCN1) in nanodiscs and detergent at 2.7 Å and 3.0 Å resolutions, respectively, and the structure-based electrophysiological analyses. VCCN1 structurally resembles its animal homolog, bestrophin, a Ca2+-gated anion channel. However, unlike bestrophin channels, VCCN1 lacks the Ca2+-binding motif but instead contains an N-terminal charged helix that is anchored to the lipid membrane through an additional amphipathic helix. Electrophysiological experiments demonstrate that these structural elements are essential for the channel activity, thus revealing the distinct activation mechanism of VCCN1.


Subject(s)
Chloride Channels , Thylakoids , Animals , Bestrophins/metabolism , Chloride Channels/metabolism , Cryoelectron Microscopy , Photosynthesis/physiology , Thylakoids/metabolism
14.
Adv Colloid Interface Sci ; 302: 102619, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276535

ABSTRACT

The transmembrane Ca2+ - activated Cl- channel - human bestrophin-1 (hBest1) is expressed in retinal pigment epithelium and mutations of BEST1 gene cause ocular degenerative diseases colectivelly referred to as "bestrophinopathies". A large number of genetical, biochemical, biophysical and molecular biological studies have been performed to understand the relationship between structure and function of the hBest1 protein and its pathophysiological significance. Here, we review the current understanding of hBest1 surface organization, interactions with membrane lipids in model membranes, and its association with microdomains of cellular membranes. These highlights are significant for modulation of channel activity in cells.


Subject(s)
Chloride Channels , Eye Proteins , Bestrophins/chemistry , Bestrophins/metabolism , Cell Membrane/chemistry , Chloride Channels/genetics , Chloride Channels/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Humans , Surface Properties
15.
Acta Ophthalmol ; 100(5): e1172-e1185, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34687141

ABSTRACT

PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.


Subject(s)
Nanofibers , Retinal Degeneration , Animals , Bestrophins/metabolism , Cells, Cultured , Nanofibers/chemistry , Polyesters/metabolism , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Swine
16.
Gene ; 813: 146117, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34902511

ABSTRACT

OBJECTIVES: The purpose of this research was to confirm the prognostic value of bestrophin-2 (BEST2), one of the hub genes in colon cancer, via bioinformatics analysis and validation in public databases and immunohistochemistry detection. METHODS: The GEO2R online tool and Venn diagram software were utilized to identify differentially expressed genes (DEGs) from expression profiles, including GSE20916, GSE44861 and GSE74602, from the Gene Expression Omnibus (GEO). The overall survival (OS) and disease-free survival (DFS) of colon cancer patients from The Cancer Genome Atlas (TCGA) were analyzed through Kaplan-Meier survival curves. Verification of the significance of BEST2 in colon cancer was based on TCGA, Genotype Tissue Expression (GTEx) and 10 datasets from GEO. BEST2 expression was detected with immunohistochemistry (IHC) in 330 colon tissue samples on microarrays including 165 colon cancerand 165 adjacent normal tissues. For further validation, comprehensive analysis from tissue microarrays and multiple datasets was performed by the summarizing of receiver operating characteristic (SROC) curves and the standard mean differences (SMDs). BEST2 expression in various kinds of colon cancer tissues and cell lines in the context of pancancer was obtained from the Expression Atlas database. The CBioPortal database was queried to identify BEST2 gene alterations and mutation status in colon cancer. Correlated genes (CEGs) with BEST2 and DEGs from public database data were assembled for functional and pathway enrichment analysis. RESULTS: We identified 85 DEGs from the three datasets and screened out BEST2 as a prognostic predictor via the TCGA database. Colon cancer patients with high expression of BEST2 had better survival than patients with low BEST2 (HR = 0.5, P = 0.006) as shown in Kaplan-Meier survival curves in GEPIA. In all, 1463 colon cancer tissues and 1023 colon normal tissues were gathered via public databases as well as in-house tissue microarrays. The comprehensiveexpression analysis suggested low-expression of BEST2 in colon cancer (SMD = -2.48, 95% CI [-3.15- -1.80]) and the notable efficacy of BEST2 expression in differentiating colon cancer from noncancer samples (AUC = 0.97). Gene alteration status of BEST2 occurred in 5% of colon cancer cases, mostly missense mutations and deep deletions. Genes positively correlated with BEST2 and DEGs primarily aggregated in pathways such as anion absorption, digestive juice secretion, cAMP signaling and so on (P < 0.05). CONCLUSION: Ampleevidencesupportsthe role of BEST2 in distinguishing colon cancer from normal tissues in this research. Low expression of BEST2 is correlated with a shorter OS, which implies that BEST2 can be employed as a potential biomarker and therapeutictarget in colon cancer.


Subject(s)
Bestrophins/genetics , Colonic Neoplasms/genetics , Bestrophins/biosynthesis , Bestrophins/metabolism , Biomarkers, Tumor/genetics , Colonic Neoplasms/metabolism , Computational Biology , Databases, Genetic , Gene Expression , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Prognosis , Protein Interaction Maps , Software , Transcriptome
17.
Biol Psychiatry ; 91(8): 740-752, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34952697

ABSTRACT

BACKGROUND: NMDA receptor (NMDAR) hypofunction has been implicated in several psychiatric disorders with impairment of cognitive flexibility. However, the molecular mechanism of how NMDAR hypofunction with decreased NMDAR tone causes the impairment of cognitive flexibility has been minimally understood. Furthermore, it has been unclear whether hippocampal astrocytes regulate NMDAR tone and cognitive flexibility. METHODS: We employed cell type-specific genetic manipulations, ex vivo electrophysiological recordings, sniffer patch recordings, cutting-edge biosensor for norepinephrine, and behavioral assays to investigate whether astrocytes can regulate NMDAR tone by releasing D-serine and glutamate. Subsequently, we further investigated the role of NMDAR tone in heterosynaptic long-term depression, metaplasticity, and cognitive flexibility. RESULTS: We found that hippocampal astrocytes regulate NMDAR tone via BEST1-mediated corelease of D-serine and glutamate. Best1 knockout mice exhibited reduced NMDAR tone and impairments of homosynaptic and α1 adrenergic receptor-dependent heterosynaptic long-term depression, which leads to defects in metaplasticity and cognitive flexibility. These impairments in Best1 knockout mice can be rescued by hippocampal astrocyte-specific BEST1 expression or enhanced NMDAR tone through D-serine supplement. D-serine injection in Best1 knockout mice during initial learning rescues subsequent reversal learning. CONCLUSIONS: These findings indicate that NMDAR tone during initial learning is important for subsequent learning, and hippocampal NMDAR tone regulated by astrocytic BEST1 is critical for heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.


Subject(s)
Astrocytes , Receptors, N-Methyl-D-Aspartate , Animals , Astrocytes/metabolism , Bestrophins/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Humans , Mice , Receptors, N-Methyl-D-Aspartate/physiology , Serine/metabolism
18.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34061021

ABSTRACT

Genetic mutation of the human BEST1 gene, which encodes a Ca2+-activated Cl- channel (BEST1) predominantly expressed in retinal pigment epithelium (RPE), causes a spectrum of retinal degenerative disorders commonly known as bestrophinopathies. Previously, we showed that BEST1 plays an indispensable role in generating Ca2+-dependent Cl- currents in human RPE cells, and the deficiency of BEST1 function in patient-derived RPE is rescuable by gene augmentation (Li et al., 2017). Here, we report that BEST1 patient-derived loss-of-function and gain-of-function mutations require different mutant to wild-type (WT) molecule ratios for phenotypic manifestation, underlying their distinct epigenetic requirements in bestrophinopathy development, and suggesting that some of the previously classified autosomal dominant mutations actually behave in a dominant-negative manner. Importantly, the strong dominant effect of BEST1 gain-of-function mutations prohibits the restoration of BEST1-dependent Cl- currents in RPE cells by gene augmentation, in contrast to the efficient rescue of loss-of-function mutations via the same approach. Moreover, we demonstrate that gain-of-function mutations are rescuable by a combination of gene augmentation with CRISPR/Cas9-mediated knockdown of endogenous BEST1 expression, providing a universal treatment strategy for all bestrophinopathy patients regardless of their mutation types.


Subject(s)
Bestrophins/genetics , Gain of Function Mutation , Loss of Function Mutation , Retinal Degeneration/genetics , Bestrophins/metabolism , CRISPR-Cas Systems , Chlorides/metabolism , Genetic Predisposition to Disease , Genetic Therapy , HEK293 Cells , Humans , Membrane Potentials , Phenotype , Retinal Degeneration/diagnosis , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Retinal Pigment Epithelium/metabolism
19.
Cell Rep ; 34(10): 108819, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691112

ABSTRACT

The upper gastrointestinal tract, consisting of the esophagus, stomach, and duodenum, controls food transport, digestion, nutrient uptake, and hormone production. By single-cell analysis of healthy epithelia of these human organs, we molecularly define their distinct cell types. We identify a quiescent COL17A1high KRT15high stem/progenitor cell population in the most basal cell layer of the esophagus and detect substantial gene expression differences between identical cell types of the human and mouse stomach. Selective expression of BEST4, CFTR, guanylin, and uroguanylin identifies a rare duodenal cell type, referred to as BCHE cell, which likely mediates high-volume fluid secretion because of continual activation of the CFTR channel by guanylin/uroguanylin-mediated autocrine signaling. Serotonin-producing enterochromaffin cells in the antral stomach significantly differ in gene expression from duodenal enterochromaffin cells. We, furthermore, discover that the histamine-producing enterochromaffin-like cells in the oxyntic stomach express the luteinizing hormone, yet another member of the enteroendocrine hormone family.


Subject(s)
Duodenum/cytology , Esophagus/cytology , Stomach/cytology , Upper Gastrointestinal Tract/cytology , Animals , Autoantigens/genetics , Autoantigens/metabolism , Bestrophins/genetics , Bestrophins/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Duodenum/metabolism , Duodenum/pathology , Esophagus/metabolism , Esophagus/pathology , Gene Expression , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Keratin-15/genetics , Keratin-15/metabolism , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Mice , Mice, Inbred C57BL , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Stomach/metabolism , Stomach/pathology , Upper Gastrointestinal Tract/metabolism , Upper Gastrointestinal Tract/pathology , Collagen Type XVII
20.
Eur J Pharmacol ; 895: 173881, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33476655

ABSTRACT

OBJECTIVES: Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS: Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS: VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS: We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.


Subject(s)
Anoctamin-1/metabolism , Cell Proliferation , Chloride Channels/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Tongue Neoplasms/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Antineoplastic Agents/pharmacology , Apoptosis , Bestrophins/genetics , Bestrophins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Cyclopentanes/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Indans/pharmacology , Ion Channel Gating , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Protein Binding , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/secondary , Tongue Neoplasms/drug therapy , Tongue Neoplasms/genetics , Tongue Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...